SENS PubMed Publication Search
Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience.
Eur Heart J. 2014 May 16. pii: ehu192. [Epub ahead of print] doi:
Menasché P, Vanneaux V, Fabreguettes JR, Bel A, Tosca L, Garcia S, Bellamy V, Farouz Y, Pouly J, Damour O, Périer MC, Desnos M, Hagège A, Agbulut O, Bruneval P, Tachdjian G, Trouvin JH, Larghero J
Abstract:
There is now compelling evidence that cells committed to a cardiac lineage are most effective for improving the function of infarcted hearts. This has been confirmed by our pre-clinical studies entailing transplantation of human embryonic stem cell (hESC)-derived cardiac progenitors in rat and non-human primate models of myocardial infarction. These data have paved the way for a translational programme aimed at a phase I clinical trial. The main steps of this programme have included (i) the expansion of a clone of pluripotent hESC to generate a master cell bank under good manufacturing practice conditions (GMP); (ii) a growth factor-induced cardiac specification; (iii) the purification of committed cells by immunomagnetic sorting to yield a stage-specific embryonic antigen (SSEA)-1-positive cell population strongly expressing the early cardiac transcription factor Isl-1; (iv) the incorporation of these cells into a fibrin scaffold; (v) a safety assessment focused on the loss of teratoma-forming cells by in vitro (transcriptomics) and in vivo (cell injections in immunodeficient mice) measurements; (vi) an extensive cytogenetic and viral testing; and (vii) the characterization of the final cell product and its release criteria. The data collected throughout this process have led to approval by the French regulatory authorities for a first-in-man clinical trial of transplantation of these SSEA-1+ progenitors in patients with severely impaired cardiac function. Although several facets of this manufacturing process still need to be improved, these data may yet provide a useful platform for the production of hESC-derived cardiac progenitor cells under safe and cost-effective GMP conditions.