SENS PubMed Publication Search
Synchrony and asynchrony between an epigenetic clock and developmental timing.
Sci Rep. 2019 Mar 6;9(1):3770. doi: 10.1038/s41598-019-39919-3
Hoshino A, Horvath S, Sridhar A, Chitsazan A, Reh TA
Abstract:
Epigenetic changes have been used to estimate chronological age across the lifespan, and some studies suggest that epigenetic "aging" clocks may already operate in developing tissue. To better understand the relationship between developmental stage and epigenetic age, we utilized the highly regular sequence of development found in the mammalian neural retina and a well-established epigenetic aging clock based on DNA methylation. Our results demonstrate that the epigenetic age of fetal retina is highly correlated with chronological age. We further establish that epigenetic aging progresses normally in vitro, suggesting that epigenetic aging is a property of individual tissues. This correlation is also retained in stem cell-derived retinal organoids, but is accelerated in individuals with Down syndrome, a progeroid-like condition. Overall, our results suggest that epigenetic aging begins as early as a few weeks post-conception, in fetal tissues, and the mechanisms underlying the phenomenon of epigenetic aging might be studied in developing organs.
PMID: 30842553
Free Full-Text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403397/