SENS PubMed Publication Search
Prospective Selective Mechanism of Emerging Senolytic Agents Derived from Flavonoids
J Agric Food Chem. 2021 Oct 18. doi: 10.1021/acs.jafc.1c04379.
Yijun Wang 1, Yufeng He 1, Margaret P Rayman 2, Jinsong Zhang 1
Abstract:
...Among senolytic candidates, only dasatinib with quercetin and fisetin meet the rigorous criteria for senolytic drugs, according to a modified version of Koch's postulates. It is astonishing that two of the three agents, i.e., quercetin and fisetin, are flavonoids, although the mechanism by which they preferentially eliminate SCs is unclear. Herein, we propose a possible selective mechanism; prooxidant activities of quercetin or fisetin are inevitably involved in killing apoptosis-resistant SCs. Among the dietary flavonoids, quercetin is a potent redox-active flavonoid with strong prooxidant activities, and transition metals, such as copper and iron, hugely amplify its prooxidant activities. Fisetin, which has higher senolytic activities than quercetin, has higher prooxidant effects than quercetin in the absence or presence of copper. It appears that the prooxidant activity of flavonoids is an important consideration for screening senolytics. SCs accumulate high levels of copper and iron, and the selective mechanism of quercetin or fisetin is probably associated with copper/iron-promoted oxidative damage in SCs. Copper and iron dramatically enhanced the prooxidant effects of the flavonoid, epigallocatechin-3-gallate, having shown a depletion effect on SCs in rats and high therapeutic efficacy in patients with idiopathic pulmonary fibrosis, largely caused by SCs. Further investigation to evaluate whether epigallocatechin-3-gallate is a senolytic drug, according to Koch's postulates, is warranted.
PMID: 34662116
Tags: fisetin, mechanisms, quercetin, senolytics