SENS PubMed Publication Search
Probucol-Oxidized Products, Spiroquinone and Diphenoquinone, Promote Reverse Cholesterol Transport in Mice.
Arterioscler Thromb Vasc Biol. 2016 Apr;36(4):591-7. doi: 10.1161/ATVBAHA.115.306376
Yakushiji E, Ayaori M, Nishida T, Shiotani K, Takiguchi S, Nakaya K, Uto-Kondo H, Ogura M, Sasaki M, Yogo M, Komatsu T, Lu R, Yokoyama S, Ikewaki K
Abstract:
OBJECTIVE:
Oxidized products of probucol, spiroquinone and diphenoquinone, were shown to increase cell cholesterol release and plasma high-density lipoprotein (HDL) by inhibiting degradation of ATP-binding cassette transporter A1. We investigated whether these compounds enhance reverse cholesterol transport in mice.
APPROACH AND RESULTS:
Spiroquinone and diphenoquinone increased ATP-binding cassette transporter A1 protein (2.8- and 2.6-fold, respectively, P<0.01) and apolipoprotein A-I-mediated cholesterol release (1.4- and 1.4-fold, P<0.01 and P<0.05, respectively) in RAW264.7 cells. However, diphenoquinone, but not spiroquinone, enhanced cholesterol efflux to HDL (+12%, P<0.05), whereas both increased ATP-binding cassette transporter G1 protein, by 1.8- and 1.6-fold, respectively. When given orally to mice, both compounds significantly increased plasma HDL-cholesterol, by 19% and 20%, respectively (P<0.05), accompanied by an increase in hepatic and macrophage ATP-binding cassette transporter A1 but not ATP-binding cassette transporter G1. We next evaluated in vivo reverse cholesterol transport by injecting RAW264.7 cells labeled with (3)H-cholesterol intraperitoneally into mice. Both spiroquinone and diphenoquinone increased fecal excretion of the macrophage-derived (3)H-tracer, by 25% and 28% (P<0.01 and P<0.05), respectively. spiroquinone/diphenoquinone did not affect fecal excretion of HDL-derived (3)H-cholesterol, implying that macrophage-to-plasma was the most important step in spiroquinone/diphenoquinone-mediated promotion of in vivo reverse cholesterol transport. Finally, spiroquinone significantly reduced aortic atherosclerosis in apolipoprotein E null mice when compared with the vehicle.
CONCLUSIONS:
Spiroquinone and diphenoquinone increase functional ATP-binding cassette transporter A1 in both the macrophages and the liver, elevate plasma HDL-cholesterol, and promote overall reverse cholesterol transport in vivo. These compounds are promising as therapeutic reagents against atherosclerosis.
Oxidized products of probucol, spiroquinone and diphenoquinone, were shown to increase cell cholesterol release and plasma high-density lipoprotein (HDL) by inhibiting degradation of ATP-binding cassette transporter A1. We investigated whether these compounds enhance reverse cholesterol transport in mice.
APPROACH AND RESULTS:
Spiroquinone and diphenoquinone increased ATP-binding cassette transporter A1 protein (2.8- and 2.6-fold, respectively, P<0.01) and apolipoprotein A-I-mediated cholesterol release (1.4- and 1.4-fold, P<0.01 and P<0.05, respectively) in RAW264.7 cells. However, diphenoquinone, but not spiroquinone, enhanced cholesterol efflux to HDL (+12%, P<0.05), whereas both increased ATP-binding cassette transporter G1 protein, by 1.8- and 1.6-fold, respectively. When given orally to mice, both compounds significantly increased plasma HDL-cholesterol, by 19% and 20%, respectively (P<0.05), accompanied by an increase in hepatic and macrophage ATP-binding cassette transporter A1 but not ATP-binding cassette transporter G1. We next evaluated in vivo reverse cholesterol transport by injecting RAW264.7 cells labeled with (3)H-cholesterol intraperitoneally into mice. Both spiroquinone and diphenoquinone increased fecal excretion of the macrophage-derived (3)H-tracer, by 25% and 28% (P<0.01 and P<0.05), respectively. spiroquinone/diphenoquinone did not affect fecal excretion of HDL-derived (3)H-cholesterol, implying that macrophage-to-plasma was the most important step in spiroquinone/diphenoquinone-mediated promotion of in vivo reverse cholesterol transport. Finally, spiroquinone significantly reduced aortic atherosclerosis in apolipoprotein E null mice when compared with the vehicle.
CONCLUSIONS:
Spiroquinone and diphenoquinone increase functional ATP-binding cassette transporter A1 in both the macrophages and the liver, elevate plasma HDL-cholesterol, and promote overall reverse cholesterol transport in vivo. These compounds are promising as therapeutic reagents against atherosclerosis.
PMID: 26848156
Free Full-Text: http://atvb.ahajournals.org/content/36/4/591.long