SENS PubMed Publication Search
Non-enzymatic glycation of annulus fibrosus alters tissue-level failure mechanics in tension
J Mech Behav Biomed Mater. 2021 Nov 20;126:104992. doi: 10.1016/j.jmbbm.2021.104992.
Benjamin Werbner 1, Matthew Lee 1, Allan Lee 2, Linda Yang 2, Mohamed Habib 3, Aaron J Fields 4, Grace D O'Connell 5
Abstract:
...the effects of AGEs on annulus fibrosus (AF) failure mechanics have not yet been reported. Thus, the aim of this study was to determine the relationship between physiological levels of AGEs and AF tensile mechanics at two distinct loading rates. In vitro glycation treatments with methylglyoxal were applied to minimize changes in tissue hydration and induce two distinct levels of AGEs based on values measured from human AF tissues. In vitro glycation increased modulus by 48-99% and failure stress by 45-104% versus control and decreased post-failure energy absorption capacity by 15-32% versus control (ANOVA p < 0.0001 on means; range given across two loading rates and glycation levels). AGE content correlated strongly with modulus (R = 0.74, p < 0.0001) and failure stress (R = 0.70, p < 0.0001) and moderately with post-failure energy absorption capacity (R = 0.62, p < 0.0001). Failure strain was reduced by 10-17% at the high-glycation level (ANOVA p = 0.01). Tissue water content remained near or just above fresh-tissue levels for all groups. The alterations in mechanics with glycation reported here are consistent with trends from other connective tissues but do not fully explain the clinical predisposition of diabetics to disc herniation. The results from this study may be used in the development of advanced computational models that aim to study disc disease progression and to provide a deeper understanding of altered structure-function relationships that may lead to tissue dysfunction and failure with aging and disease.