SENS PubMed Publication Search
Characterization of Early Alzheimer's Disease-Like Pathological Alterations in Non-Human Primates with Aging: A Pilot Study
J Alzheimer's Dis. 2022 Jun 13. doi: 10.3233/JAD-215303.
Hannah Jester 1, Saahj Gosrani 1, Huiping Ding 2, Xueyan Zhou 1, Mei-Chuan Ko 2, Tao Ma 1 2 3
Abstract:
Background: Sporadic or late onset Alzheimer's disease (LOAD) is a multifactorial neurodegenerative disease with aging the most known risk factor. Non-human primates (NHPs) may serve as an excellent model to study LOAD because of their close similarity to humans in many aspects including neuroanatomy and neurodevelopment. Recent studies reveal AD-like pathology in old NHPs.
Objective: In this pilot study, we took advantage of brain samples from 6 Cynomolgus macaques that were divided into two groups: middle aged (average age 14.81 years) and older (average age 19.33 years). We investigated whether AD-like brain pathologies are present in the NHPs.
Methods: We used immunohistochemical method to examine brain Aβ pathology and neuron density. We applied biochemical assays to measure tau phosphorylation and multiple signaling pathways indicated in AD. We performed electron microscopy experiments to study alterations of postsynaptic density and mitochondrial morphology in the brain of NHPs.
Results: We found multiple AD-like pathological alteration in the prefrontal cortex (but not in the hippocampus) of the older NHPs including tau hyperphosphorylation, increased activity of AMP-activated protein kinase (AMPK), decreased expression of protein phosphatase 2A (PP2A), impairments in mitochondrial morphology, and postsynaptic densities formation.
Objective: In this pilot study, we took advantage of brain samples from 6 Cynomolgus macaques that were divided into two groups: middle aged (average age 14.81 years) and older (average age 19.33 years). We investigated whether AD-like brain pathologies are present in the NHPs.
Methods: We used immunohistochemical method to examine brain Aβ pathology and neuron density. We applied biochemical assays to measure tau phosphorylation and multiple signaling pathways indicated in AD. We performed electron microscopy experiments to study alterations of postsynaptic density and mitochondrial morphology in the brain of NHPs.
Results: We found multiple AD-like pathological alteration in the prefrontal cortex (but not in the hippocampus) of the older NHPs including tau hyperphosphorylation, increased activity of AMP-activated protein kinase (AMPK), decreased expression of protein phosphatase 2A (PP2A), impairments in mitochondrial morphology, and postsynaptic densities formation.
PMID: 35723096
Tags: Alzheimer’s, animal models, macaques, tau