SENS PubMed Publication Search
A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues
Nat Commun. 2022 Aug 16;13(1):4827. doi: 10.1038/s41467-022-32552-1.
Dominik Saul 1 2 3, Robyn Laura Kosinsky 4, Elizabeth J Atkinson 5, Madison L Doolittle 6 7, Xu Zhang 7 8, Nathan K LeBrasseur 7 8, Robert J Pignolo 6 7 8, Paul D Robbins 9, Laura J Niedernhofer 9, Yuji Ikeno 10, Diana Jurk 7 8, João F Passos 7 8, LaTonya J Hickson 11, Ailing Xue 7, David G Monroe 6 7, Tamara Tchkonia 7 8, James L Kirkland 7 8, Joshua N Farr 12 13 14, Sundeep Khosla 15 16 17
Abstract:
...Here, we generate a gene set (SenMayo) and validate its enrichment in bone biopsies from two aged human cohorts. We further demonstrate reductions in SenMayo in bone following genetic clearance of senescent cells in mice and in adipose tissue from humans following pharmacological senescent cell clearance. We next use SenMayo to identify senescent hematopoietic or mesenchymal cells at the single cell level from human and murine bone marrow/bone scRNA-seq data. Thus, SenMayo identifies senescent cells across tissues and species with high fidelity. Using this senescence panel, we are able to characterize senescent cells at the single cell level and identify key intercellular signaling pathways. SenMayo also represents a potentially clinically applicable panel for monitoring senescent cell burden with aging and other conditions as well as in studies of senolytic drugs.
PMID: 35974106
Free Full-Text: https://www.nature.com/articles/s41467-022-32552-1
Tags: methods