SENS PubMed Publication Search
Profiling age-related muscle weakness and wasting: neuromuscular junction transmission as a driver of age-related physical decline
Geroscience. 2021 Jun;43(3):1265-1281. doi: 10.1007/s11357-021-00369-3.
Carlos J Padilla 1, Markus E Harrigan 1, Hallie Harris 1, Jan M Schwab 1 2 3 4 5 6, Seward B Rutkove 7, Mark M Rich 8, Brian C Clark 9, W David Arnold 10 11 12 13 14
Abstract:
...Here we investigated age-related loss of NMJ function using clinically relevant, electrophysiological measures (single-fiber electromyography (SFEMG) and repetitive nerve stimulation (RNS)) in aged (26 months) versus young (6 months) F344 rats. Measures of muscle function (e.g., grip strength, peak plantarflexion contractility torque) and mass were assessed for correlations with physiological measures (e.g., indices of NMJ transmission). Other outcomes also included plantarflexion muscle contractility tetanic torque fade during 1-s trains of stimulation as well as gastrocnemius motor unit size and number. Profiling NMJ function in aged rats identified significant declines in NMJ transmission stability and reliability. Further, NMJ deficits were tightly correlated with hindlimb grip strength, gastrocnemius muscle weight, loss of peak contractility torque, degree of tetanic fade, and motor unit loss. Thus, these findings provide direct evidence for NMJ dysfunction as a potential mechanism of age-related muscle dysfunction pathogenesis and severity. These findings also suggest that NMJ transmission modulation may serve as a target for therapeutic development for age-related loss of physical function.
PMID: 33895959
Free Full-Text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190265/
Tags: muscle, neuromuscular junctions, rats, sarcopenia