SENS PubMed Publication Search
Hematopoietic stem cells for cancer immunotherapy.
Immunol Rev. 2014 Jan;257(1):237-49. doi: 10.1111/imr.12128
Gschweng E, De Oliveira S, Kohn DB
Abstract:
Hematopoietic stem cells (HSCs) provide an attractive target for immunotherapy of cancer and leukemia by the introduction of genes encoding T-cell receptors (TCRs) or chimeric antigen receptors (CARs) directed against tumor-associated antigens. HSCs engraft for long-term blood cell production and could provide a continuous source of targeted anti-cancer effector cells to sustain remissions. T cells produced de novo from HSCs may continuously replenish anti-tumor T cells that have become anergic or exhausted from ex vivo expansion or exposure to the intratumoral microenvironment. In addition, transgenic T cells produced in vivo undergo allelic exclusion, preventing co-expression of an endogenous TCR that could mis-pair with the introduced TCR chains and blunt activity or even cause off-target reactivity. CAR-engineered HSCs may produce myeloid and natural killer cells in addition to T cells expressing the CAR, providing broader anti-tumor activity that arises quickly after transplant and does not solely require de novo thymopoiesis. Use of TCR- or CAR-engineered HSCs would likely require cytoreductive conditioning to achieve long-term engraftment, and this approach may be used in clinical settings where autologous HSC transplant is being performed to add a graft-versus-tumor effect.
Results of experimental and preclinical studies performed to date are reviewed.
Results of experimental and preclinical studies performed to date are reviewed.
PMID: 24329801
Tags: cancer immunotherapy, HSC, review