SENS PubMed Publication Search
An epigenetic component of hematopoietic stem cell aging amenable to reprogramming into a young state.
Blood. 2013 May 23;121(21):4257-64. doi: 10.1182/blood-2012-11-469080
Wahlestedt M, Norddahl GL, Sten G, Ugale A, Micha Frisk MA, Mattsson R, Deierborg T, Sigvardsson M, Bryder D
Abstract:
[FULL]: "Here, we entertained the hypothesis that HSC aging is driven by the acquisition of permanent genetic mutations. To examine this issue at a functional level in vivo, we applied induced pluripotent stem (iPS) cell reprogramming of aged hematopoietic progenitors and allowed the resulting aged derived iPS cells to reform hematopoiesis via blastocyst complementation. Next, we functionally characterized iPS-derived HSCs in primary chimeras and following the transplantation of ‘re-differentiated’ HSCs into new hosts; the gold standard to assess HSC function. Our data demonstrate remarkably similar functional properties of iPS-derived and endogenous blastocyst-derived HSCs, despite the extensive chronological and proliferative age of the former. Our results therefore favor a model in which an underlying, but reversible, epigenetic component is a hallmark of HSC aging rather than being driven by an increased DNA mutation burden."
PMID: 23476050
Tags: epigenetics, HSC, stem cells