SENS PubMed Publication Search
Localised micro-mechanical stiffening in the ageing aorta.
Mech Ageing Dev. 2011 Oct;132(10):459-67. doi: 10.1016/j.mad.2011.07.003
Graham HK, Akhtar R, Kridiotis C, Derby B, Kundu T, Trafford AW, Sherratt MJ
Abstract:
Age-related loss of tissue elasticity is a common cause of human morbidity and arteriosclerosis (vascular stiffening) is associated with the development of both fatal strokes and heart failure. However, in the absence of appropriate micro-mechanical testing methodologies, multiple structural remodelling events have been proposed as the cause of arteriosclerosis. Therefore, using a model of ageing in female sheep aorta (young: <18 months, old: >8 years) we: (i) quantified age-related macro-mechanical stiffness, (ii) localised in situ micro-metre scale changes in acoustic wave speed (a measure of tissue stiffness) and (iii) characterised collagen and elastic fibre remodelling. With age, there was an increase in both macro-mechanical stiffness and mean microscopic wave speed (and hence stiffness; young wave speed: 1701±1ms(-1), old wave speed: 1710±1ms(-1), p<0.001) which was localized to collagen fibril-rich regions located between large elastic lamellae. These micro-mechanical changes were associated with increases in both collagen and elastic fibre content (collagen tissue area, young: 31±2%, old: 40±4%, p<0.05; elastic fibre tissue area, young: 55±3%, old: 69±4%, p<0.001). Localised collagen fibrosis may therefore play a key role in mediating age-related arteriosclerosis. Furthermore, high frequency scanning acoustic microscopy is capable of co-localising micro-mechanical and micro-structural changes in ageing tissues.
PMID: 21777602
Free Full-Text: http://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21777602/
Tags: arteries, arteriosclerosis, fibrosis