SENS PubMed Publication Search
Stem cell factor and granulocyte colony-stimulating factor reduce β-amyloid deposits in the brains of APP/PS1 transgenic mice.
Alzheimers Res Ther. 2011 Mar 15;3(2):8. doi:
Li B, Gonzalez-Toledo ME, Piao CS, Gu A, Kelley RE, Zhao LR
Abstract:
INTRODUCTION:
....Recently, we demonstrated that stem cell factor (SCF) in combination with granulocyte colony-stimulating factor (G-CSF) (SCF+G-CSF) has therapeutic effects on chronic stroke. The purpose of the present study is to determine whether SCF+G-CSF can reduce the burden of β-amyloid deposits in a mouse model of AD.
METHODS:
APP/PS1 transgenic mice were used as the model of AD. To track bone marrow-derived cells in the brain, the bone marrow of the APP/PS1 mice was replaced with the bone marrow from mice expressing green fluorescent protein (GFP). Six weeks after bone marrow transplantation, mice were randomly divided into a saline control group and a SCF+G-CSF-treated group. SCF in combination with G-CSF was administered subcutaneously for 12 days. Circulating bone marrow stem cells (CD117+ cells) were quantified 1 day after the final injection. Nine months after treatment, at the age of 18 months, mice were sacrificed. Brain sections were processed for immunohistochemistry to identify β-amyloid deposits and GFP expressing bone marrow-derived microglia in the brain.
RESULTS:
Systemic administration of SCF+G-CSF to APP/PS1 transgenic mice leads to long-term reduction of β-amyloid deposition in the brain. In addition, we have also observed that the SCF+G-CSF treatment increases circulating bone marrow stem cells and augments bone marrow-derived microglial cells in the brains of APP/PS1 mice. Moreover, SCF+G-CSF treatment results in enhancement of the co-localization of bone marrow-derived microglia and β-amyloid deposits in the brain.
CONCLUSIONS:
These data suggest that bone marrow-derived microglia play a role in SCF+G-CSF-induced long-term effects to reduce β-amyloid deposits. This study provides insights into the contribution of the hematopoeitic growth factors, SCF and G-CSF, to limit β-amyloid accumulation in AD and may offer a new therapeutic approach for AD.
....Recently, we demonstrated that stem cell factor (SCF) in combination with granulocyte colony-stimulating factor (G-CSF) (SCF+G-CSF) has therapeutic effects on chronic stroke. The purpose of the present study is to determine whether SCF+G-CSF can reduce the burden of β-amyloid deposits in a mouse model of AD.
METHODS:
APP/PS1 transgenic mice were used as the model of AD. To track bone marrow-derived cells in the brain, the bone marrow of the APP/PS1 mice was replaced with the bone marrow from mice expressing green fluorescent protein (GFP). Six weeks after bone marrow transplantation, mice were randomly divided into a saline control group and a SCF+G-CSF-treated group. SCF in combination with G-CSF was administered subcutaneously for 12 days. Circulating bone marrow stem cells (CD117+ cells) were quantified 1 day after the final injection. Nine months after treatment, at the age of 18 months, mice were sacrificed. Brain sections were processed for immunohistochemistry to identify β-amyloid deposits and GFP expressing bone marrow-derived microglia in the brain.
RESULTS:
Systemic administration of SCF+G-CSF to APP/PS1 transgenic mice leads to long-term reduction of β-amyloid deposition in the brain. In addition, we have also observed that the SCF+G-CSF treatment increases circulating bone marrow stem cells and augments bone marrow-derived microglial cells in the brains of APP/PS1 mice. Moreover, SCF+G-CSF treatment results in enhancement of the co-localization of bone marrow-derived microglia and β-amyloid deposits in the brain.
CONCLUSIONS:
These data suggest that bone marrow-derived microglia play a role in SCF+G-CSF-induced long-term effects to reduce β-amyloid deposits. This study provides insights into the contribution of the hematopoeitic growth factors, SCF and G-CSF, to limit β-amyloid accumulation in AD and may offer a new therapeutic approach for AD.