SENS PubMed Publication Search
Mass spectrometry-based proteomics reveals the distinct nature of the skin proteomes of photoaged compared to intrinsically aged skin.
Int J Cosmet Sci. 2019 Apr;41(2):118-131. doi: 10.1111/ics.12513
Newton VL, Riba-Garcia I, Griffiths CEM, Rawlings AV, Voegeli R, Unwin RD, Sherratt MJ, Watson REB
Abstract:
OBJECTIVE:
With increasing age, skin is subject to alterations in its organization, which impact on its function as well as having clinical consequences. Proteomics is a useful tool for non-targeted, semi-quantitative simultaneous investigation of high numbers of proteins. In the current study, we utilize proteomics to characterize and contrast age-associated differences in photoexposed and photoprotected skin, with a focus on the epidermis, dermal-epidermal junction and papillary dermis.
METHODS:
Skin biopsies from buttock (photoprotected) and forearm (photoexposed) of healthy volunteers (aged 18-30 or ≥65 years) were transversely sectioned from the stratum corneum to a depth of 250 μm. Following SDS-PAGE, each sample lane was segmented prior to analysis by liquid chromatography-mass spectrometry/mass spectrometry. Pathway analysis was carried out using Ingenuity IPA.
RESULTS:
Comparison of skin proteomes at buttock and forearm sites revealed differences in relative protein abundance. Ageing in skin on the photoexposed forearm resulted in 80% of the altered proteins being increased with age, in contrast to the photoprotected buttock where 74% of altered proteins with age were reduced. Functionally, age-altered proteins in the photoexposed forearm were associated with conferring structure, energy and metabolism. In the photoprotected buttock, proteins associated with gene expression, free-radical scavenging, protein synthesis and protein degradation were most frequently altered.
CONCLUSION:
This study highlights the necessity of not considering photoageing as an accelerated intrinsic ageing, but as a distinct physiological process.
With increasing age, skin is subject to alterations in its organization, which impact on its function as well as having clinical consequences. Proteomics is a useful tool for non-targeted, semi-quantitative simultaneous investigation of high numbers of proteins. In the current study, we utilize proteomics to characterize and contrast age-associated differences in photoexposed and photoprotected skin, with a focus on the epidermis, dermal-epidermal junction and papillary dermis.
METHODS:
Skin biopsies from buttock (photoprotected) and forearm (photoexposed) of healthy volunteers (aged 18-30 or ≥65 years) were transversely sectioned from the stratum corneum to a depth of 250 μm. Following SDS-PAGE, each sample lane was segmented prior to analysis by liquid chromatography-mass spectrometry/mass spectrometry. Pathway analysis was carried out using Ingenuity IPA.
RESULTS:
Comparison of skin proteomes at buttock and forearm sites revealed differences in relative protein abundance. Ageing in skin on the photoexposed forearm resulted in 80% of the altered proteins being increased with age, in contrast to the photoprotected buttock where 74% of altered proteins with age were reduced. Functionally, age-altered proteins in the photoexposed forearm were associated with conferring structure, energy and metabolism. In the photoprotected buttock, proteins associated with gene expression, free-radical scavenging, protein synthesis and protein degradation were most frequently altered.
CONCLUSION:
This study highlights the necessity of not considering photoageing as an accelerated intrinsic ageing, but as a distinct physiological process.
PMID: 30661253
Tags: aging characterization, humans, proteomics, skin, sunlight, UV exposure